
New Results on the Two�sh Encryption Algorithm

Bruce Schneier� John Kelseyy Doug Whitingz David Wagnerx Chris Hall{

Niels Ferguson k

February 1, 1999

Abstract

Two�sh is a 128-bit block cipher submitted as an AES candidate. We provide several new results,
continuing the research in [SKW+98a, SKW+99b]. 1) We provide new performance numbers, including:
faster encryption and decryption on the Pentium Pro/II, faster key setup on the Pentium and Pentium
Pro/II in assembly language, large-RAM implementations on 32-bit CPUs, Alpha performance, more
implementation options on smart cards, and a low-gate-count hardware implementation. 2) In the initial
Two�sh paper [SKW+98a], we gave initial estimates of an upper bounds on the probability of a 12-round
di�erential. These results used an imperfect model of Two�sh. We present an improved model, and show
that any 12-round di�erential characteristic has a probability of at most 2�102:8. 3) We show that each
distinct Two�sh key generates a unique sequence of subkeys Ki, and each round function F is unique
for a distinct value of the S bits used to generate the S-boxes. Thus, no two distinct keys result in an
identical sequence of round functions.

1 Improved Two�sh Imple-

mentations

This section discusses improvements in the perfor-
mance of Two�sh [SKW+98a, WS98, SKW+99b].

1.1 Pentium and Pentium Pro/II
Performance

Table 1 gives new assembly-language performance
for Two�sh on the Pentium and Pentium Pro/II.
We have sped up the fastest assembly-language im-
plementations.

1.2 Pentium Pro/II Large Memory
Implementations

For machines with su�cient RAM and a good mem-
ory cache subsystem, large precomputed tables can
be used to reduce the key setup time for Two�sh
even further. For example, in compiled, full, or
partial keying modes, the �rst two levels of q0 and

q1 lookups with one key byte can be precomputed
for all four S-boxes, requiring 256 Kbytes of table
(four tables of 64 Kbytes each). This approach saves
roughly 2000 clocks per key setup on the Pentium
Pro in assembly language; details are shown in Ta-
ble 2. For instance, the compiled mode key setup for
128-bit keys on a Pentium Pro can be reduced from
8700 clocks to 6500 clocks. Unfortunately, the sav-
ings on Pentium and Pentium MMX CPUs seems to
depend on the performance of the L2 cache subsys-
tem (which is included in the Pentium Pro and thus
is more predictable); the gain seems to range from
500 clocks down to nothing. Implementing this \big
table" version in C also leads to savings of about
1000 clocks per key setup on the Pentium Pro, de-
pending on the quality of the compiler; again, Pen-
tium performance gains are minimal.

For the ultimate in key agility, a full 256 Mbytes
of precomputed tables could comprise all four S-
boxes for the �nal two stages of q0; q1, covering all
216 key byte possibilities for the 128-bit key case,
and including the MDS matrix multiply. With a
good memory subsystem, such a version should cut

�Counterpane Systems; 101 E Minnehaha Parkway, Minneapolis, MN 55419, USA; schneier@counterpane.com.
yCounterpane Systems; kelsey@counterpane.com.
zHi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com.
xUniversity of California Berkeley, Soda Hall, Berkeley, CA 94720, USA; daw@cs.berkeley.edu.
{Counterpane Systems; hall@counterpane.com.
kCounterpane Systems; niels@counterpane.com.

1

Processor Lang Keying Code Clocks to Key Clocks to Encrypt
Option Size 128 192 256 128 192 256

PPro/II ASM Comp. 9000 8600 11300 14100 258 258 258
PPro/II ASM Full 8500 7600 10400 13200 315 315 315
PPro/II ASM Part. 10700 4900 7600 10500 460 460 460
PPro/II ASM Min. 13600 2400 5300 8200 720 720 720
PPro/II ASM Zero 9100 1250 1600 2000 860 1130 1420

Pentium ASM Comp. 9100 12300 14600 17100 290 290 290
Pentium ASM Full 8200 11000 13500 16200 315 315 315
Pentium ASM Part. 10300 5500 7800 9800 430 430 430
Pentium ASM Min. 12600 3700 5900 7900 740 740 740
Pentium ASM Zero 8700 1800 2100 2600 1000 1300 1600

Table 1: Two�sh ASM Performance with Di�erent Key Lengths and Options

Processor Lang Keying Code Clocks to Key Clocks to Encrypt
Option Size 128 192 256 128 192 256

PPro/II ASM Comp. 271,200 6500 9200 11900 285 285 285
PPro/II ASM Full 270,600 5300 8000 11000 315 315 315
PPro/II ASM Part. 272,900 2600 5300 8200 460 460 460

PPro/II MS C Full 273,300 7300 11200 15700 600 600 600

Table 2: Two�sh Performance with Large Fixed Tables

another 1000 clocks or so out of the above key-setup
times. Clearly, this is a fairly expensive solution (at
least with today's technology), but it illustrates the

exibility of Two�sh very nicely.

1.3 Smart Card Performance

Table 3 gives additional performance data for the
6805 smart card CPU. (See also [SKW+99a].) The
code size includes both encryption and decryption.1

The block encryption and decryption times are al-
most identical. If only encryption is required, mi-
nor improvements in code size and speed can be ob-
tained. The only key schedule precomputation time
required in this implementation is the Reed-Solomon
mapping used to generate the S-box key material S
from the key M , which requires slightly over 1750
clocks per key. This setup time can be made consid-
erably shorter at the cost of two additional 256-byte
ROM tables. It should also be observed that the
lack of a second index register on the 6805 has a sig-
ni�cant impact on the code size and performance, so
a di�erent CPU with multiple index registers (e.g.,
6502) might be a better �t for Two�sh.

1.3.1 RAM Usage

For any encryption algorithm, memory usage can be
divided into two parts: that required to hold the ex-
panded key, and that required as working space to
encrypt or decrypt text (including the text block).
In applications where a smart card holds a single
key for a long period of time, the key can be put
into EEPROM or even ROM, greatly reducing RAM
requirements. Most applications, however, require
the smart card to encrypt using session keys, which
change with each transaction. In these situations,
the expanded key must be stored in RAM, along
with working space to perform the encryption.

Two�sh|the 128-bit key version|can be imple-
mented in a smart card in 60 bytes of RAM. This
includes the text block, key, and working space. If a
slightly expanded key (16 bytes of the key plus an-
other 8 bytes of the Reed-Solomon results (S)) can
be stored in ROM or EEPROM, then Two�sh can
be implemented in only 36 bytes of RAM. In either
case, there is zero key-setup time for the next en-
cryption operation with the same key.2

Larger key sizes require more RAM to store the
larger keys: 36 bytes for 192-bit keys and 48 bytes for

1For comparison purposes: DES on a 6805 takes about 1 Kbyte code, 23 bytes of RAM, and 20000 clock cycles per block.
2All of our implementations leave the key intact so that it can be used again.

2

RAM, ROM, or Working Code and Clocks Time per Block
EEPROM for Key RAM Table Size per Block @ 4MHz

24 36 2200 26500 6.6 msec
24 36 2150 32900 8.2 msec
24 36 2000 35000 8.7 msec
24 36 1750 37100 9.3 msec
184 36 1900 15300 3.8 msec
184 36 1700 18100 4.5 msec
184 36 1450 19200 4.8 msec
1208 36 1300 12700 3.2 msec
1208 36 1100 15500 3.9 msec
1208 36 850 16600 4.2 msec
3256 36 1000 11900 3.0 msec

Table 3: Two�sh Performance, with a 128-Bit Key, on a 6805 Smart Card

256-bit keys. If these applications can store key ma-
terial in ROM or EEPROM, then these key lengths
can be implemented on smart cards with only 36
bytes of RAM. All of this RAM can be reused for
other purposes between block encryption operations.

For smart cards with larger memory to hold key-
dependent data, encryption speed can increase con-
siderably. This is because the round keys can be
precomputed as part of the expanded key, requir-
ing a total of 184 bytes of key memory. As shown
in Table 3, this option nearly halves the encryp-
tion time. If the smart card has enough additional
memory available to hold 1 Kbyte of precomputed S-
box in either RAM, ROM, or EEPROM (for a total
of 1208 bytes), performance improves further. Fi-
nally, as shown in the �nal row of Table 3, if the
entire precomputed S-box plus MDS table can be
held in memory (3256 bytes), the speed can again
be increased slightly more. It should be noted that
some of these \large RAM" implementations save
512 bytes of code space by assuming that certain
tables are not required in ROM, with the entire pre-
computation being instead performed on the host
that sets the key in the smart card. If the smart card
has to perform its own key expansion the code size
will increase. This increase has its own space/time
tradeo� options.

This
exibility makes Two�sh well-suited for
both small and large smart card processors: Two�sh
works in the most RAM-poor environments, while at
the same time it is able to take advantage of both
moderate-RAM cards and large-RAM cards.

1.3.2 Encryption Speed and Key Agility

On a 6805 with only 60 bytes of RAM, Two�sh en-
crypts at speeds of 26500 to 37100 clocks per block,
depending on the amount of ROM available for the
code. On a 4 MHz chip, this translates to 6.6 msec to
9.3 msec per encryption. In these implementations,
the key-schedule precomputation time is minimal:
slightly over 1750 clocks per key. This setup time
could be cut considerably at the cost of two addi-
tional 512-byte ROM tables, which would be used
during the key schedule.

If ROM is expensive, Two�sh can be imple-
mented in less space at slower speeds. The space{
speed tradeo�s are of two types: unrolling loops and
implementing various lookup tables. By far, the lat-
ter has the larger impact on size and speed. For
example, Two�sh's MDS matrix can be computed
in three di�erent ways:

� Full table lookups for the multiplications by
EF and 5B. This is the fastest, and requires
512 bytes of ROM for tables.

� Single table lookup for the multiplications by
��1. This is slower, but only requires 256
bytes of ROM for the table.

� No tables, all multiplies done with shifts and
xors. This is the slowest, and the smallest.

Longer keys are slower, but only slightly so. For
the small memory versions, Two�sh's encryption
time per block increases by less than 2600 clocks per
block for 192-bit keys, and by about 5200 clocks per
block for 256-bit keys. Similarly, the key schedule
precomputation increases to 2550 clocks for 192-bit
keys, and to 3400 clocks for 256-bit keys.

3

As shown in Table 3, in smart card CPUs with
su�cient additional RAM storage to hold the en-
tire set of subkeys, the throughput improves signif-
icantly, although the key setup time also increases.
The time savings per block is over 11000 clocks, cut-
ting the block encryption time down to about 15000
clocks; i.e., nearly doubling the encryption speed.
The key-setup time increases by roughly the same
number of clocks, thus making the key-setup time
comparable to a single block encryption. This ap-
proach also cuts down the code size by a few hundred
bytes. It should be noted further that, in �xed-key
environments, the subkeys can be stored along with
the key bytes in EEPROM, cutting the total RAM
usage down to 36 bytes while maintaining the higher
speed.

As another tradeo�, if another 1 Kbyte of RAM
or EEPROM is available, all four 8-bit S-boxes can
be precomputed. Clearly, this approach has rel-
atively low key agility, but the time required to
encrypt a block decreases by roughly 6000 clocks.
When combined with precomputed subkeys as dis-
cussed in the previous paragraph, the block encryp-
tion time drops to about 12000 clocks, which trans-
lates to nearly three times the best speed for \low
RAM" implementations. In most cases, this ap-
proach would be used only where the key is �xed, but
it does allow for very high throughput. Similarly, if 3
Kbytes of RAM or EEPROM is available for tables,
throughput can be further improved slightly.

The wide variety of possible speeds again illus-
trates Two�sh's
exibility in these constrained envi-
ronments. The algorithm does not have one speed; it
has many speeds, depending on available resources.

1.3.3 Code Size

Two�sh code is very compact: 1760 to 2200 bytes
for minimal RAM footprint, depending on the im-
plementation. The same code base can be used for
both encryption and decryption. If only encryption
is required, minor improvements in code size can be
obtained (on the order of 150 bytes). The extra code
required for larger keys is fairly negligible: less than
100 extra bytes for a 192-bit key, and less than 200
bytes for a 256-bit key.

Observe that it is possible to save further ROM
space by computing q0 and q1 lookups using the un-
derlying 4-bit construction. Such a scheme would re-
place 512 bytes of ROM table with 64 bytes of ROM
and a small subroutine to compute the full 8-bit q0
and q1, saving perhaps 350 bytes of ROM; unfortu-
nately, encryption speed would decrease by a factor
of ten or more. Thus, this technique is only of inter-

est in smart card applications for which ROM size is
extremely critical but performance is not. Nonethe-
less, such an approach illustrates the implementation

exibility a�orded by Two�sh.

1.4 Performance on the Alpha

The 64-bit Alpha 21164 CPU can run up to 600 MHz
using only a 0.35 micron CMOS process, compared
to the 0.25 micron technology used in a Pentium II.
The Alpha is widely regarded as the fastest general
purpose processor available today. Its architecture
and performance are expected to remain at the lead-
ing edge of technology for the foreseeable future. It
has a 4-way superscalar architecture, which is fairly
close in many respects to a Pentium II. Two�sh
should run on an Alpha in roughly the same number
of clocks as on a Pentium Pro (i.e., 300).

1.5 Hardware Performance

Table 4 gives hardware size and speed estimates for
the case of 128-bit keys. The �rst line is new. The
�rst line of the table is a \byte serial" implementa-
tion. It uses one clock per S-box lookup, and four
clocks per h function (including the MDS). We allow
two clocks for the PHT and key addition. With four
h functions per round, each round requires 18 clock
cycles.

2 Empirical Veri�cation of

Two�sh Key Uniqueness

Properties

In the Two�sh encryption key schedule for an N -bit
key (N = 128; 192; 256), three di�erent sets of key
material are used, each consisting of N=2 bits, as
described in [SKW+98a, SKW+98b]. Two of these
sets, Me and Mo in the notation of the paper, con-
sist of the even and odd 32-bit words of key material,
respectively, and are used to generate the round sub-
keys Kj . The third set, S, is derived by applying a
Reed-Solomon parity code matrix (RS) to the entire
key, and the bits of S are used to de�ne the four key-
dependent S-boxes si of Two�sh. Any two of these
three sets is su�cient to determine the entire key.

Given the structures used for generating subkeys
and S-boxes, it appears intuitively that each distinct
Two�sh key results in a distinct cipher. In this pa-
per we describe some empirical work performed to
verify certain uniqueness properties of Two�sh keys
that strongly support our intuition [WW98]. In par-
ticular, we have proven that:

4

Gate h Clocks/ Interleave Clock Throughput Startup
Count Blocks Block Levels Speed (Mbits/sec) Clocks

8000 0.25 324 1 80 MHz 32 20
14000 1 72 1 40 MHz 71 4
19000 1 32 1 40 MHz 160 40
23000 2 16 1 40 MHz 320 20
26000 2 32 2 80 MHz 640 20
28000 2 48 3 120 MHz 960 20
30000 2 64 4 150 MHz 1200 20
80000 2 16 1 80 MHz 640 300

Table 4: Hardware Tradeo�s (128-bit Key)

� No two distinct keys produce an identical se-
quence of subkeys Kj . In fact, we actually
have proven an even stronger result; namely,
each distinct Me results in a unique sequence
of Ai values, and each distinct Mo results in a
unique sequence of Bi values.

� Each distinct value for S results in a unique
round function F . This fact splits all keys into
equivalence classes of size 2N=2 with respect to
the round functions.

Given these two results, it is clear that no two keys
produce the same sequence of round functions. Un-
fortunately, this result stops short of proving con-
clusively that each distinct Two�sh key results in a
distinct cipher, since it is not impossible theoreti-
cally that two ciphers with di�erent round functions
could produce an identical cipher. However, such an
occurrence seems incredibly unlikely.

2.1 Distinct Subkey Sequences

Let us examine the Ai sequences used in generat-
ing subkeys. Similar arguments apply to the Bi se-
quence, and the same empirical veri�cation has been
performed for both sequences. Note that, since the
operations used to compute K2i and K2i+1 from Ai

and Bi are reversible, proving that the Ai and Bi se-
quences are distinct is more than su�cient to prove
that the Kj sequences are distinct.

Note that Ai = h(2�i;Me), where in this case
the h function consists of applying the MDS matrix
multiplication to the four values (y0; y1; y2; y3) ob-
tained by running the value i through 1+N=64 levels
of q0 and q1, xoring with bits from Me. Since the
MDS matrix is nonsingular, it is easily seen that, for
example, a unique sequence for the y0 values results
in a unique sequence for the Ai values, with similar
results for y1, y2, and y3.

The sequence of y0 values for 256-bit keys is

q1[q0[q0[q1[q1[i]� k3]� k2]� k1]� k0]

where the kj are di�erent bytes from Me. Smaller
keys result in similar equations with fewer key bytes,
so the analysis is almost identical but the empirical
search time is much smaller. The question at hand
is whether two distinct sets of four key bytes can
result in an identical sequence of twenty y0 values.
In fact, we exclude the input and output whitening
values to concentrate solely on the round subkeys,
so only sixteen values are included in our test (one
per round). Clearly, there are 232 such sequences.
However, this number can be reduced for the pur-
poses of our search by noting that, since the \outer"
mapping q1 is bijective, it can be removed from the
equation, leaving us with

q0[q0[q1[q1[i]� k3]� k2]� k1]� k0

Now the outer xor term k0 can be e�ectively re-
moved by creating a related sequence with only �f-
teen values, where the y0 values for i = 5::19 are
xored with the i = 4 value. The k0 terms thus can-
cel out, so there are only 224 equivalence classes of
sequences, speeding up the search dramatically. If
all these sequences (each with 15*8 = 120 bits) are
unique, then the y0 sequence is also guaranteed to
be unique.

For 192-bit keys, the y0 sequence is

q1[q0[q0[q1[i]� k2]� k1]� k0]

and for 128-bit keys, it is

q1[q0[q0[i]� k1]� k0]:

In a manner identical to that discussed for 256-bit
keys, the outer q1 permutation can be removed for
these smaller keys, and the outer k0 term can sim-
ilarly be removed by creating the related xor se-
quence. The number of the remaining sequences is

5

216 and 28, respectively. All these sequences can
then be compared across key sizes (with a total of
Ns = 224+216+28 sequences) to verify uniqueness.

A computer search has been performed over y0,
y1, y2, and y3, for all sequences across all key lengths.
It turns out that only 64 bits were needed to distin-
guish the sequences. This fact is actually quite en-
couraging, since there are 120 bits in each sequence,
giving some heuristic comfort that the sequences are
in fact quite di�erent. Each search requires slightly
more than 128 Mbytes memory (i.e., 8Ns bytes) to
hold all the sequences, which are then sorted and
compared to adjacent values to guarantee unique-
ness. The test was run on a Pentium computer with
only 32 Mbytes of memory, so the search was actu-
ally performed in multiple passes, running through
all the Ns values several times, on each pass select-
ing only those values falling into certain bins. For
example, using approximately 8 Mbytes of memory,
there are sixteen passes, with the mth pass discard-
ing all sequence values for which a �xed four-bit �eld
of the sequence is not equal to m. In addition, the
same test was run for the Bi using Mo, with similar
results.

The de�nitive result from these tests is that there
are no two distinct keys of any size for which the
same sequence of Ai and Bi values is obtained.
Thus, the round subkey sequenceKj is unique across
keys.

2.2 Distinct Round Functions

The round function F takes a 64-bit input and pro-
duces a 64-bit output, and F is characterized by the
four S-boxes si and the round keys K2r+8, K2r+9.
The S-boxes depend on N=2 bits of key material S.
Our test for distinctness of the round functions con-
centrates on only a single bit of the output, which
will be su�cient to prove uniqueness.

In particular, consider the value

F1 = (T0 + 2T1 +K2r+9)mod 2
32

where T0 = g(R0) and T1 = g(ROL(R1; 8)). The
g function involves an MDS matrix multiply, which
uses the xor operation. Hence, it is di�cult to ana-
lyze the full F1 value, because of the interaction be-
tween operations of di�erent algebraic groups (i.e.,
xor and addition). However, if we examine only the
least signi�cant bit (lsb) of F1, we can ignore carries,
so the operation can be analyzed entirely using xor.
Note that this bit does not depend on R1, due to
the multiplication by two in the PHT. Further, the
MDS matrix element that maps the S-box output is
a simple linear transformation (i.e., multiplication

by a GF(256) �eld element). Thus, for each S-box,
the e�ect of the �nal �xed permutation (q0 or q1) of
the S-box and the MDS multiply on the lsb of F1 is
a simple �xed mapping from eight bits to one bit.

Now, consider two keys with distinct values for
S. Since the S values are di�erent, at least one of the
four S-boxes must have di�erent key material under
the two di�erent keys. To prove uniqueness, we sim-
ply �x the inputs to the remaining three S-boxes,
so that their xor \contribution" to the lsb of F1 is
�xed. Up to a �xed xor constant (based on K2r+9

and the other three S-boxes), we are then left with
a simple function involving a single S-box that maps
eight bits to one bit, with N=8 bits of key material
used in the S-box. We can remove dependence on the
�xed constant by constructing sequences consisting
of the xor of two bits in the S-box/MDS lsb out-
put sequence, similar to the method discussed in the
previous section. If this sequence of bits is unique
across all 2N=8 possible key material values for the
S-box, then the F function is unique with respect
to that S-box. If all four S-boxes are unique in this
way, then the F function is unique for each distinct
value of S.

To remove the dependence on the constant bit,
we performed our search on a modi�ed sequence in
which each bit was the xor of two lsbs of the S-
box/MDS output values. Since the si mapping has
256 inputs, this limits the sequence to only 255 val-
ues, which is still easily su�cient to distinguish be-
tween F functions. Let us �rst consider the 256-bit
key case, which obviously involves the longest search.
Note that, for example,

s0(x) = q1[q0[q0[q1[q1[x]� k3]� k2]� k1]� k0]

where the kj bytes are a subset of the bytes in S.
There are 232 such functions, but, unfortunately,
since we are dealing only with the lsb, there is no
obvious method to cut down the search time by a
factor of 256, as we were able to do in the previous
section. Similar sequences were produced for the
smaller key sizes, with all sequences for each S-box
combined across key sizes in the test, for a total of
NF = 232 + 224 + 216 sequences per S-box.

To avoid a \birthday surprise" collision with NF

sequences, we require more than 64 bits of each se-
quence. Even with only 64 bits, however, a total
of over 32 GB of memory would be required, a size
far beyond the budget of this experiment. Thus,
this test was also performed in multiple passes, with
each pass generating all NF sequences but discard-
ing those values not falling into the selected bin for
the particular pass, as in the previous section. It
was found empirically that the performance time

6

was roughly proportional to the number of passes;
in other words, the sort/compare time for a given
pass was considerably shorter than the O(232) time
requires to generate the \�ltered" list. For example,
on a Pentium computer with slightly over 256MB of
available RAM, 128 passes are required, which em-
pirically were completed for a single S-box in slightly
less than three days on a 200 MHz Pentium. Each
sequence value in the list consisted of 64 bits, with
additional sequence bits used to �lter out values not
to be used in a given pass. For a 128-pass test, this
means that seven extra bits were used to help avoid
a birthday surprise collision. The �ltering code (in
C) was carefully optimized so that most of the val-
ues to be �ltered on each pass were quickly rejected.
Since 127 of every 128 values were �ltered out on
each pass, this simple optimization sped up perfor-
mance considerably, without requiring particularly
fast generation of the 64-bit sequence values to be
included.

The test was run on several Pentium computers
with various amounts of RAM over a period of about
ten days. The results showed that, for each of the
four S-boxes, all NF mappings have a unique lsb se-
quence. Thus, each F function is unique for each
distinct value of S.

2.3 Conclusion and Future Work

We have empirically proven that every Two�sh key
leads to a unique set of round constants, and that
every string S used to de�ne the S-boxes results
in a unique F -function. Although these properties
seemed intuitively true, having an exhaustive proof
is nonetheless reassuring. Given the structure of
Two�sh, it appears unlikely that there are any weak
keys or signi�cant problems with related keys.

3 Upper Bounds on Di�er-

ential Characteristics in

Two�sh

The original Two�sh report [SKW+98a] contained
an initial analysis of the feasibility of a di�erential
attack against the Two�sh cipher. In this paper we
will investigate di�erential attacks against Two�sh
further [Fer98b]. We assume familiarity with both
Two�sh and di�erential cryptanalysis.

The results of [SKW+98a] are not �rm, as the
model used to estimate the best di�erential is only
an approximation of Two�sh. We started a project
to investigate di�erential attacks against Two�sh
further. This paper is a status report of our results

to date. We expect to continue this work and achieve
signi�cant improvements over our current results.

The �rst choice we have to make in di�eren-
tial cryptanalysis is what type of di�erences to use.
Two�sh contains S-boxes, an MDS matrix multiply,
addition modulo 232, xors, and rotations. There
are two types of di�erences that we think could
be useful: an xor di�erence, and a di�erence mod
232. When we use an xor di�erence we have to use
approximations for the S-boxes and the additions
modulo 232; when we use a di�erences modulo 232

we have to use approximations for the S-boxes, the
MDS matrix multiply, the xors, and the rotations.

The xor and addition operations are fairly
closely related, and either operation can be approx-
imated with reasonable success in the group of the
other operation. In the comparison we will ignore
the S-boxes; we assume they are equally hard to ap-
proximate in each of the groups. An xor di�erential
has to approximate two addition operations in each
round. A additive di�erential has to approximate
the MDS matrix, a single xor, and a rotation. We
estimate that it is about as di�cult to approximate
an addition for an xor di�erential as it is to approx-
imate an xor for an additive di�erential. The ro-
tation seems to be somewhat easier to approximate
for an additive di�erential than an xor operation.
So if we ignore the MDS matrix, it would seem that
additive di�erentials are more attractive.

For our analysis, the MDS matrix multiply is
best written as a linear function: each output bit is
the xor of several input bits. This is very easy from
the point of view of an xor di�erence; no approx-
imation is necessary and any given input di�erence
leads to precisely one output di�erence. For an ad-
ditive di�erence this is much harder. There do not
seem to be any good approximations of the MDS
matrix for an additive di�erence. Therefore, we es-
timate that xor-based di�erentials are much more
e�ective than additive di�erentials. In the rest of
this paper we will only look at xor based di�eren-
tials.

3.1 Notation

We use the de�nitions and symbols of the Two�sh
report [SKW+98a, SKW+99b]. Let B be the set of
all possible byte values. Let G be the F -function
without the key-dependent S-boxes. Thus G con-
sists of two MDS matrix multiplies, the PHT, and
the subkey addition.

7

3.2 Di�erentials of the S-boxes

In this section we look at di�erential characteristics
of the S-boxes. Each S-box consists of a sequence of
q-mappings and xors with a key byte. For q0 and
q1, the probability of each di�erential can easily be
computed by trying all possible pairs of inputs.

We de�ne pi(a; b) to be the probability that qi
has an output di�erence of b, given an input di�er-
ence of a. In other words:

pi(a; b) := Pr
x2B

[qi(x� a) = qi(x)� b] i = 0; 1

We now look at the �rst two stages of an S-box. This
consists of a q-mapping, followed by an xor with a
key byte, followed by another q-mapping. As usual,
we assume uniform random distributions of the in-
put values and the key bytes. We de�ne pij(a; b)
to be the probability that this construction gives an
output di�erence b given an input di�erence a, where
i is the number of the �rst q-mapping, and j is the
number of the second q-mapping. It is easy to see
that

pij(a; b) =
X
d2B

pi(a; d)pj(d; b) (1)

for i; j 2 f0; 1g, and we can extend this de�nition
to arbitrary long chains of q-mappings and key-byte
xors. In general it holds that

pij:::m(a; b) =
X
d2B

pi(a; d)pj:::m(d; b)

for i; j; : : : ;m 2 f0; 1g. This allows us to compute
the exact probabilities for each of the S-boxes in
Two�sh. Table 5 gives the probabilities of the best
di�erential of each of the S-boxes for each of the
key lengths. From this point of view the S-boxes
are very good; there are no high-probability di�eren-
tials. (Note that the average di�erential probability
is 1=255 = 1:0039 � 2�8 as we know that the S-boxes
are permutations and thus the output di�erential 0
does not occur in non-trivial cases. The best di�er-
ential probability must be at least as large as the
average.)

Note that the numbers in this table hold only
when the key bytes are chosen at random. If we
try a di�erential many times, each time with ran-
dom input and key byte values then we expect to
get the numbers in the table. However, for any par-
ticular set of key bytes there are di�erentials with a
much higher probability (as shown in [SKW+98a]).
Our computations are no longer valid because, for
any �xed key byte, the di�erential probabilities of
pi and pj in equation 1 are no longer independent of
each other.

Two�sh uses the same S-boxes in each round.
When analyzing a multi-round di�erential charac-
teristic, the di�erential probabilities of each of the
round functions are not independent, either. This
makes the analysis of the probability of a di�eren-
tial characteristic more di�cult.

3.3 Di�erentials of F

The function F takes a 64-bit input and produces a
64-bit output. Thus there are a total of about 2128

possible di�erentials. It is clearly not possible to
compute or list all of them. To alleviate this prob-
lem we will group the di�erentials in sets, and for
every set compute upper bounds on the probability
of the di�erentials in that set.

We split the 2128 di�erent di�erential patterns
into a number of subsets. The input di�erence is
classi�ed by the set of input-bytes that are non-zero.
There are 256 di�erent classi�cations of input di�er-
ences. The output di�erence too are classi�ed by
the set of output-bytes that are non-zero. We group
di�erentials with the same input and output classi-
�cation in the same set. There are therefore 216 dif-
ferent sets of di�erentials, each containing between
1 and 25516 elements.

We will construct di�erentials of F in two steps.
First we use a di�erential approximation of the S-
boxes, and then we use an approximation of the dif-
ferentials of G.

3.3.1 Di�erentials of G

The MDS matrix multiply is purely linear, and thus
creates no problem for our di�erential. The PHT
and key addition use addition modulo 232 as basic
operation. This makes the di�erentials non-trivial.
A theoretical analysis of di�erential probabilities is
di�cult as the probabilities at the result are not in-
dependent of each other. We therefore chose to use
numerical simulation to establish bounds on the dif-
ferential probability.

We are trying to derive an upper bound on di�er-
ential probabilities. Therefore, we are interested in
�nding good bounds for the most likely di�erentials
of G. In [SKW+98a] it is shown that for any 128-
bit key, the best di�erential probability of an S-box
is 18=256. If we look only at the S-boxes, then the
most likely di�erentials occur when there are a low
number of active S-boxes. The most important task
is thus to �nd good bounds on the di�erential char-
acteristics of G for di�erentials with a low number
of active S-boxes.

8

128-bit key 192-bit key 256-bit key
Sbox 0 1:0649 � 2�8 1:0084 � 2�8 1:0043 � 2�8

Sbox 1 1:0566 � 2�8 1:0087 � 2�8 1:0043 � 2�8

Sbox 2 1:0533 � 2�8 1:0097 � 2�8 1:0045 � 2�8

Sbox 3 1:0538 � 2�8 1:0088 � 2�8 1:0044 � 2�8

Table 5: Best Di�erential Probabilities of the S-boxes

We performed numerical simulations of di�eren-
tials of G. Given an input di�erence, we generated n
random input pairs with that di�erence and applied
the G function, using random keys. We collected
the output di�erences and counted how often each
of them appeared. Due to limited resources we could
only do this analysis for moderately large n.

From this data, we would like to derive a bound
on the di�erential probability. Let us assume a spe-
ci�c di�erential occurs k times out of n tries. It is
obviously not a good idea to use k=n as a bound on
the di�erential probability. Most possible di�erences
occur 0 times, but we should not assume that they
have a 0 probability. If we knew the distribution
of the probability we could give some meaningful
bound; for example, saying that the probability is
less than x with a con�dence level of 1%. However,
in our case we do not know the distribution of the
di�erential probabilities, and it would be dangerous
to assume one. We can, however, reverse the pro-
cess.

Let us assume that a speci�c di�erential has a
probability p. If we try the input di�erence n times,
we expect to �nd this di�erential around p �n times.
The number of times this di�erential is actually ob-
served is binomially distributed. LetX be a stochas-
tic variable that represents the number of times the
di�erential is observed. We have

Pr(X = k) =

�
n

k

�
(1� p)n�kpk k = 0; : : : ; n

From this distribution we can derive a bound on the
lower tail of the binomial distribution [Fer98a]:

Pr(X � k) < Pr(X = k)
p(n� k + 1)

(p � n� k) + p

for k � p � n. Given a probability p for the di�er-
ential we can say that we have an unlikely event if
the di�erential occurs k times and Pr(X � k) <

where
 would be a small number. This is a normal
test for statistical signi�cance.

We use the following rule to derive a bound on
a di�erential that occurs k out of n times. We use
a probability p such that Pr(X � k) <
 for some

global parameter
 (typical values for
 are 0.05 or
0.01). Of course, we try to choose p as low as pos-
sible given this condition. This will overestimate p
for most di�erentials, but underestimate the actual
p in a few cases.

We ran these simulations for all input di�erences
with a low enough number of active S-boxes. For ev-
ery di�erential that we tried we estimated the prob-
ability using this rule. For each set of di�erentials
with the same input and output characterization we
computed the maximum estimated probability. For
each di�erential there is a small chance that we un-
derestimates the probability. However, it is far less
likely that we underestimated the maximum prob-
ability of a set of di�erentials. For our maximum
to be too low we have to have underestimated the
probability of the most likely di�erential. This by
itself is rather unlikely. Not only that, we cannot
signi�cantly overestimate the probability of any dif-
ferential with a probability close to the most likely
di�erential. We therefore feel con�dent that these
approximations are reasonable, and that they most
likely will result in our overestimating the actual dif-
ferential probability quite signi�cantly.

For di�erentials with too many active S-boxes
(for which we did not run the simulations) we sim-
ply use an upper bound of 1 on the probability of a
di�erential of G.

To improve e�ciency we generate our input dif-
ferences using a straightforward structure. This im-
proves our performance and allows us to increase the
number of samples that we make. However, the dif-
ferentials that we try are no longer independent of
each other. We have observed that the use of struc-
tures signi�cantly increases the peaks in the bounds.
The smaller the structures that we use, the lower the
maximum probability bound tends to be. Therefore,
we try to reduce the use of structures. We hope our
next software version will allow us to eliminate struc-
tures altogether.

Apart from these numerical results, we know that
certain di�erential patterns cannot occur. For exam-
ple, if the input di�erence is restricted to the �rst in-
put word of the G, then the output di�erence must
have active bits in both output words. Similarly, if

9

the input di�erence is restricted to the second in-
put word of G, then the output di�erence must have
active bits in both halves, except when the output
of the MDS matrix has a di�erence of 0x80000000.
In this special case, we know that all four S-boxes
in this half must be active (otherwise, more than 1
byte in the output of the MDS matrix must change).
Our software generates all these impossible di�eren-
tial patterns and sets the di�erential probabilities of
the associated sets to zero.

3.3.2 Di�erentials of F

Given the results from the last section, we can now
create a table of upper bounds on the di�erential
probabilities of di�erentials of F . For each set of
di�erentials we know how many active S-boxes there
are. Let � be the maximum probability of a di�eren-
tial of an S-box. We can now bound the probability
of each set of di�erentials by multiplying the bounds
that we found in the previous section on the set by
the proper power of �.

The value � can be set in various ways. We know
that most S-boxes have a best di�erential probability
of 12=256. For the time being we will use this value
for �. Other values, especially larger ones, will be
discussed later.

3.4 Di�erentials of the Round Func-
tion

Once we have derived bounds on the di�erentials
of F we can do the same for the round function.
The di�erential pattern at the start of the round is
characterized by 16 bits, each bit indicating whether
the di�erential pattern in the corresponding byte is
nonzero. Given the characterization of the di�er-
ential pattern at the input of the round, we know
exactly which S-boxes are active. We can generate
a list of all suitable di�erential patterns of F with
their associated probability bound. Each of these
di�erentials is combined with the other half of the in-
put di�erential using the rotate and xor operations.
Each choice of F di�erential set leads to several pos-
sible output di�erential patterns as the rotate and
xors can lead to di�erent output characterizations,
depending on the exact di�erential.

For example, let us look at a di�erential pattern
of 0110 in a 32-bit word. This pattern indicates that
only the middle two bytes of the 4-byte word con-
tain active di�erential bits. After a left rotation, the
possible output di�erential patterns are: 0100, 0110,
1010, 1100, and 1110. xoring two di�erential pat-
terns can similarly lead to a list of possible results.

If we xor two words, one with a di�erential pattern
of 0101 and one with a di�erential pattern of 0011,
then the possible result patterns are 0110 and 0111.

For each input di�erential pattern, we can go
through all possible F di�erential patterns, and gen-
erate all possible output patterns that can arise. For
each possible output pattern, we keep track of the
largest upper bound that we generate this way. This
produces an upper bound for each of the 232 possi-
ble input/output di�erential patterns of the round
function.

3.5 Multi-round Patterns

The simplest way of generating multi-round patterns
would be to use the list of 232 possible round pat-
terns and a standard search algorithm. We use an
algorithm that is somewhat more e�cient than that.
There are 216 possible di�erential patterns after r
rounds, as each of the 16 data bytes can have a zero
or nonzero di�erence. For each of the 216 possible
patterns we store an upper bound on the probability
of any characteristic that has this di�erence pattern
after r rounds. Furthermore, we store the list of dif-
ferential patterns of F , and a precomputed table of
how the rotates and xors can propagate patterns.
For each di�erence pattern after r+1 rounds, we use
this data to compute an upper bound on the prob-
ability of a di�erential characteristic that has this
pattern after r + 1 rounds.

Given the output pattern of the round in ques-
tion, we know the �rst half of the input pattern.
This leaves us with 256 possible di�erential input
patterns, and 256 possible di�erential patterns of
F . Each of the 216 possible combinations is tried
to see whether it can yield the required output dif-
ferential pattern. The process can be speeded up by
traversing either the F output patterns or the input
patterns in decreasing order of probability and using
some simple cut-o� logic.

3.6 Results

The results depend on the parameters used to es-
timate the di�erential probabilities of G, and the
values of
 and �.

Our current results use n = 211 tries for all dif-
ferentials with 1 active S-box, and n = 28 tries for
all di�erentials with 2 active S-boxes. The structure
size is 8 and 16, respectively. We use
 = 0:05, and
� = 12=256. The full Two�sh cipher has 16 rounds.
We assume that an adversary can somehow bypass
the �rst round, and can mount a 3R-attack. We thus
look at the best 12-round di�erential characteristic.

10

With these parameters we found an upper bound
on a 12-round di�erential characteristic of 2�102:8.
This puts a di�erential attack against Two�sh well
outside the practical realm.

This upper bound is pessimistic in the following
areas:

� The best di�erential pattern used three active
S-boxes in four of the 12 rounds. The prob-
ability of passing a di�erential with three ac-
tive S-boxes through G is currently taken to be
1. This is clearly overly optimistic, especially
since the di�erential pattern used has both a
low input and a low output weight. We be-
lieve that extending our simulations to all dif-
ferentials with three active S-boxes will yield
a signi�cant further reduction in probability.

� Many of the rounds in the best di�erential pat-
tern use fancy transformations of the di�erence
pattern by the rotations. This is to be ex-
pected of our algorithm, but any non-trivial
transformation poses serious restrictions on
the actual di�erence patterns of that word.
This makes it much less likely that our up-
per bound can actually be approached by an
actual di�erential.

� Our estimates are based on the maximum
probability of groups of di�erentials. It is not
clear at all that there exists a di�erential that
has a probability that even approaches our up-
per bound.

3.7 Other Problems for the Attacker

To create an attack, the attacker has to choose a
speci�c di�erential characteristic. That character-
istic uses certain speci�c di�erences of each of the
S-boxes. To get anywhere near the bound all of
these di�erences need to have a probability close to
our �. We chose � equal to the probability of the
best di�erential of most S-boxes. However, a spe-
ci�c di�erential will not have the same probability
under all keys. If the S-box keys are not known, the
attacker has two options. First, he can guess the
S-box key bits, and construct a di�erential charac-
teristic based on that assumption. To achieve good
di�erential probabilities in enough S-boxes, he will
have to guess the keys of at least two S-boxes (be-
tween 32 and 64 bits, depending on the key size).
Alternatively he can try to �nd a di�erential that
works for all keys. As we saw in section 3.2 this
leads to very low di�erential probabilities.

3.8 Best S-box Di�erential

We use � = 12=256. While we know that there are
keys for which the best S-box di�erential has prob-
ability 18=256 for a 128-bit key (and even higher
for larger key sizes), those higher probabilities only
occur for a small subset of the keys. We need to ad-
dress the question of how much we are willing to pay
in the size of the keyspace the attack is e�ective on
to get a higher probability. If we have an attack that
works for 2�28 of the key space, how much more e�-
cient should the attack be before it is a better choice
for the attacker?

The most natural way to decide this is to look
at the expected work for the attacker before recov-
ering a single key. We assume that there are enough
keys to attack, and optimize the attacker's strategy
to �nd any one key with the least amount of work.
This is a reasonable way of looking at the attacker's
problem. After all, we know there is an attack that
is e�ective on a subset of 2�64 of the keys with 264

work: a simple exhaustive search of the subset of
that size will do. With such an brute-force attack
on a subset of the keys, the expected amount of work
before a key is found remains the same.

Let us now look at our Two�sh di�erentials. Sup-
pose we want to use a di�erential of S-box 0 with
probability 14=256; this is possible for about 1 in 8
of all possible keys. We have restricted ourselves to
1=8th of the set of keys, so the workload of our at-
tack should be reduced by at least a factor of 8 for
this to be worthwhile. We ran our search for the best
di�erential characteristic pattern again where S-box
0 had a best di�erential probability of 14=256. The
resulting di�erential probability was 4:6 times higher
than the result with � = 12=256. Is this worth it?

Let us assume a di�erential has a probability that
depends on the key. We have a list of (pi; ki) where
the probability of the di�erential is at most pi for a
fraction ki of all keys. The expected workload of the
attacker to get a single right pair is 1=pi for a frac-
tion ki of the key space, and thus �ki=pi when taken
over all keys. The workload is at least max ki=pi.
This corresponds to the workload of an attack with
a di�erential with probability min pi=ki. In our sit-
uation the minimum occurs when we use the S-box
approximation with probability 12=256. (Using the
�gures from Table 3 in [SKW+98a], we �nd that
pi=ki reaches its minimum at pi = 12=256.) As we
currently ignore the 1=ki term, the actual \e�ective"
probability of a real di�erential is lower than the
bound that we have derived.

We conclude that using a higher probability than
12=256 for an S-box approximation is not worth the

11

loss in key space on which the approximation holds.
Thus the bounds we presented earlier hold, and are
in fact pessimistic.

3.9 Other Variants

As an experiment we ran the same analysis for
Two�sh with the 1-bit rotations removed. This
makes our approximations match the behavior of the
di�erential much better. Our results give an upper
bound on the probability of a 12-round di�erential
characteristic of 2�104:1.

This bound is not much better than we have for
full Two�sh. However, the sequence of di�erential
patterns that achieves this bound uses far more ap-
proximations of F that have three active S-boxes. In
all cases it uses di�erential characteristics of G that
have three active input bytes and only a few active
output bytes. In practice, such di�erentials of G will
have a far lower probability than the upper bound of
1 that we currently use. Therefore, we expect that
our bound can be improved to beyond 2�128.

We have no reason to believe that the 1-bit ro-
tations make Two�sh stronger against a di�erential
attack. They were conceived to break up the byte-
level structure, but they do not require a separate
approximation or increase the avalanche e�ect of the
cipher. We think it is unlikely that the full Two�sh
has a di�erential characteristic that is signi�cantly
more likely than the version without rotations.

3.10 Further Work

We will continue our analysis work to improve the
bound and our understanding of the intricacies of
Two�sh. We have several areas that we plan to im-
prove.

3.10.1 Improved G Di�erential Estimates

An obvious way to improve our overall bound is to
improve our bounds on the di�erentials of G. We
hope to be able to do this in the near future. A
larger sample-size will improve the accuracy of our
estimates. Extending our computations to di�eren-
tials of G with three active S-boxes should give a
great improvement.

3.10.2 More Accurate Patterns

Our current pattern-representation is somewhat
coarse. We group di�erentials only by which bytes
contain active bits. Apart from the �rst and �nal
round, all internal di�erential patterns in our best
result have at most four active bytes (out of 16). A

more �ne-grained grouping of the di�erentials could
lead to a better upper bound.

For example, there are only a few G di�erences
with one active input byte that have a relatively
high probability. Instead of grouping these into the
sets, we could treat them separately. This would
ensure that our algorithm doesn't magically trans-
form the output of the high-probability di�erence
pattern to one with fewer active bytes by the rota-
tion. The characterization could be extended with
special cases for di�erences that have only a few ac-
tive nibbles. We expect that this will result in more
S-boxes being needed for a full di�erential charac-
teristic, and thus a lower bound.

3.10.3 Improved Treatment of S-box Di�er-

entials

There is still room to improve our approximations of
the S-boxes. We can, for example, compute the best
di�erential approximation for each of the output dif-
ferences separately. This can then be combined with
the analysis of G to get a better bound on di�eren-
tials of F .

The data on the best S-box di�erentials in
[SKW+98a] is merged for all the S-boxes. We plan
to test the di�erentials again and collect information
for each S-box separately.

We will also improve our handling of the vari-
ation of di�erential probability over the keyspace.
This will also result in a better bound.

3.10.4 Additive Di�erentials

We would like to take a closer look at additive dif-
ferentials modulo 232. Although we do not expect
these to be more useful, it would be nice to derive
some bound in that case too.

3.11 Conclusion

For practical purposes, Two�sh is immune to dif-
ferential cryptanalysis. We have shown that any
12-round di�erential has a probability of at most
2�102:8. This bound is far from hard, and we ex-
pect that any real di�erential has a much smaller
probability.

The Two�sh structure is not easy to analyze.
The mixing of various operations makes it hard to
give a clean analysis and forces us to use approxi-
mation techniques. Some aspects, such as the ro-
tates, make the analysis considerably harder and
force us to use less accurate approximations, while

12

there is no a priori reason to assume that the ro-
tations would have any signi�cant in
uence on the
di�erential probabilities.

One can argue whether a cipher with a structure
that is easier to analyze would be preferable. On
the one hand, a structure that allows easier analysis
makes it easier to rule out certain attacks. On the
other hand, the very structure that makes it easy to
analyze might be used in a future attack. Although
di�erential attacks were obviously considered during
the design, Two�sh was not speci�cally strengthened
against di�erential attacks, or designed to allow a
simple upper bound on di�erential probabilities to
be derived. This is a result of the design philosophy
of Two�sh. It was not optimized speci�cally against
known attacks; it is a conservative design that tries
to resist both known and unknown attacks.

References

[Fer98a] N. Ferguson, \Bounds on the tail of binomial
distributions", research notes, 1998.

[Fer98b] N. Ferguson, \Upper Bounds on Di�eren-
tial Characteristics in Two�sh," Two�sh
Technical Report #1, Counterpane Sys-
tems, http://www.counterpane.com/

twofish-differential.html, Aug 1998.

[SKW+98a] B. Schneier, J. Kelsey, D. Whiting,
D. Wagner, C. Hall, and N. Fergu-

son, \Two�sh: A 128-Bit Block Cipher,"
NIST AES Proposal, Jun 98. http://

www.counterpane.com/twofish.html

[SKW+98b] B. Schneier, J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson, \On
the Two�sh Key Schedule," Proceedings of

the 1998 SAC Conference, Springer-Verlag,
1998, to appear.

[SKW+99a] B. Schneier, J. Kelsey, D. Whiting, D. Wag-
ner, C. Hall, and N. Ferguson, \Two�sh on
Smart Cards," Proceedings of CARDIS 98,
Springer-Verlag, to appear.

[SKW+99b] B. Schneier, J. Kelsey, D. Whiting, D. Wag-
ner, C. Hall, and N. Ferguson, The Two�sh

Encryption Algorithm: A 128-bit Block Ci-

pher, John Wiley & Sons, 1999.

[WS98] D. Whiting and B. Schneier, \Improved
Two�sh Implementations," Two�sh Tech-
nical Report #3, Counterpane Sys-
tems, http://www.counterpane.com/

twofish-speed.html, 2 Dec 1998.

[WW98] D. Whiting and D. Wagner, \Empirical
Veri�cation of Two�sh Key Unique-
ness Properties," Two�sh Technical Re-
port #2, Counterpane Systems, http://

www.counterpane.com/twofish-keys.html,
22 Sep 1998.

13

